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ABSTRACT

We present redshift probability distributions for galaxies in the SDSS DR8

imaging data. We used the nearest-neighbor weighting algorithm (Lima et al.

2008; Cunha et al. 2009) to derive the ensemble redshift distribution N(z), and

individual redshift probability distributions P (z) for galaxies with r<21.8 and

u<29.0. As part of this technique, we calculated weights for a set of training

galaxies with known redshifts such that their density distribution in five dimen-

sional color-magnitude space was proportional to that of the photometry-only

sample, producing a nearly fair sample in that space. We estimated the ensem-

ble N(z) of the photometric sample by constructing a weighted histogram of the

training set redshifts. We derived P (z)s for individual objects by using train-

ing set objects from the local color-magnitude space around each photometric

object. Using the P (z) for each galaxy can reduce the statistical error in mea-

surements that depend on the redshifts of individual galaxies. The spectroscopic

training sample is substantially larger than that used for the DR7 release. The

newly added PRIMUS catalog is now the most important training set used in this
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analysis by a wide margin. We expect the primary sources of error in the N(z)

reconstruction to be sample variance and spectroscopic failures: the training sets

are drawn from relatively small volumes of space, and some samples have large

incompleteness. Using simulations we estimated the uncertainty in N(z) due to

sample variance at a given redshift to be ∼10-15%. The uncertainty on calcula-

tions incorporating N(z) or P (z) depends on how they are used; we discuss the

case of weak lensing measurements. The P (z) catalog is publicly available from

the SDSS website.

1. Introduction

Photometric redshifts are estimates of redshift derived using broad-band photometric

observables such as magnitudes and colors (Baum 1962; Puschell et al. 1982; Koo 1985; Loh

& Spillar 1986; Connolly et al. 1995). Typically, the set of observables for a given galaxy

are not sufficient to uniquely specify its redshift, but only a probability distribution, the

P (z). These P (z)s are often relatively broad. For simplicity of use and interpretation, one

commonly uses a single number, the photometric redshift, as the best estimate of a galaxy’s

redshift. As several recent works have shown (Mandelbaum et al. 2008; Cunha et al. 2009;

Wittman 2009; Bordoloi et al. 2010; Abrahamse et al. 2011), the use of a single number to

represent the photo-z leads to biases. Working with the full P (z) for each galaxy yields better

estimates of the overall redshift distribution, N(z), and can decrease biases in cosmological

analyses. We note that several public photo-z codes exist that can produce a P (z) per galaxy,

e.g. Le Phare (Arnouts et al. 1999; Ilbert et al. 2006), ZEBRA (Feldmann et al. 2006), BPZ

(Coe et al. 2006), ArborZ (Gerdes et al. 2010), and our own method (Cunha et al. 2009),

henceforth referred to as ProbWTS, which is an acronym for Probability Distributions from

Weighted Training Sets. We use P (z)w when referring to the P (z) derived from ProbWTS.

In this paper, we describe a P (z) catalog for objects detected in the Data Release 8

(SDSS DR8; Aihara et al. 2011) of the Sloan Digital Sky Survey III (SDSS III; Eisenstein

et al. 2011). We use the method of Cunha et al. (2009), which was also applied to SDSS

DR7 (Abazajian et al. 2009), with improvements in the training set and photometry. The

DR7 catalog of Cunha et al. (2009) has been successfully used in cosmological analyses,

allowing, for example, for the first measurement of the transverse BAO scale derived purely

from angular information, i.e. without using the 3D power-spectrum (Carnero et al. 2011)

and for the measurement of the growth of structure using photometric LRGs (Crocce et al.

2011).

This paper is organized as follows. In §2 we discuss the method and in §3,4,5 we describe
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the data and sample selection. In §6 we discuss the training set and in §7,8 we show our

results, including information about their public release, and estimate errors. In §9, we

discuss the proper usage of these results. As an example, in §10 we discuss the particular

case of weak gravitational lensing calculations, and explore the expected errors on such a

measurement. Finally, in §11 we summarize our results.

2. Method

The algorithm is detailed in Lima et al. (2008) and Cunha et al. (2009). The method is

to derive weights for a training set of spectroscopically confirmed galaxies such that the distri-

bution of relevant quantities, such as magnitudes or colors, matches that of a set of galaxies

without known redshifts, henceforth the photometric sample. Assuming these quantities

correlate with redshift, and are the only relevant quantities for redshift determination, the

resulting weighted redshift histogram is proportional to the redshift probability distribution

N(z) of the photometric sample.

The weighting forces the distributions of observables of the two samples to be pro-

portional, essentially creating a “fair sample” from the training set, avoiding errors due to

population differences. An additional advantage is that the technique naturally identifies the

regions of intersection in the observable space between training and photometric samples.

Only in the intersection can one safely use the training sample to make inferences about the

photometric sample.

The method, as well as any other training set based estimator, will not work if there

are redshift selection issues localized in the space of observables. For example, consider a

sample of galaxies occupying the same region of observable space. If, there is a systematic

selection such that the subset of the galaxies with spectra has a systematically different

redshift distribution from the rest of the galaxies, the weights will not be able to recover the

redshift distribution correctly. Note that if redshifts cannot be obtained for a galaxies with

a particular type of SED, there will only be a bias if the redshift distribution of galaxies

with that SED at that particular region of observable space does not match that of the other

galaxies. In general, this does not appear to be a dominant issue for this dataset, but may

affect some particular populations.
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2.1. Nearest-neighbor P (z) redshift estimators

2.1.1. Weights

In this section, we briefly review the weighting method1 of Lima et al. (2008), which

is required for computing P (z). We define the weight, w, of a galaxy in the spectroscopic

training set as the normalized ratio of the density of galaxies in the photometric sample to

the density of training set galaxies around the given galaxy. These densities are calculated in

a local neighborhood in the space of photometric observables, e.g., multi-band magnitudes.

In this case, the SDSS ugriz magnitudes are our observables; in practice we use four colors

and the r–band magnitude. The hypervolume used to estimate the density is set to be the

Euclidean distance of the galaxy to its 100th nearest-neighbor in the training set. Note, when

the training data is assembled from multiple spectroscopic samples, we estimate the weights

from the entire combined sample rather than separately from individual samples.

The weights can be used to estimate the redshift distribution N(z)wei of the photometric

sample:

N(z)wei =

NT
∑

β=1

wβδ(z − zβ) . (1)

For a bin z1 < z < z2, we sum the weights, wβ, of all (NT = 100 in our case) training set

galaxies that have redshift zβ fall within that bin. Lima et al. (2008) and Cunha et al. (2009)

show that this indeed provides a nearly unbiased estimate of the redshift distribution of the

photometric sample, N(z)P, provided the differences in the selection of the training and

photometric samples are solely in the observable quantities used to calculate the weights.

For example, if the photometric sample has a morphology dependent cut, the same cut

should be applied to the training sample or morphology should be one of the observables

used to measure weights.

2.1.2. P (z)

To estimate the redshift error distribution for each galaxy, P (z), we adopt the method

of Cunha et al. (2009). The P (z) for a given object in the photometric sample is simply the

redshift distribution of the N nearest neighbors in the training set.

1The weights and P (z) codes are available at http://kobayashi.physics.lsa.umich.edu/∼ccunha/nearest/.

Alternatively, the code can be accessed as the git repository probwts in http://github.com
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P̂ (z) =

NT
∑

β=1

wβδ(z − zβ) . (2)

This expression is the same as Eqn. 1 but is limited to the nearest neighbors of a given

object. We choose NT = 100 for this study, and estimate P (z) in 35 redshift bins between

z = 0 and 1.1. We can also construct a new estimator for N(z)P by summing the P̂ (z)

distributions for all NP,tot galaxies in the photometric sample,

N(z)P =

NP,tot
∑

i=1

P̂i(z) . (3)

A key difference between the estimators in Eqn. (1) and Eqn. (3) is that the hyperball used

to select the nearest neighbors is centered on a training set object in the weights estimator,

but centered on a photometric set object for the P (z) estimator. The estimators of Eqn. (1)

and Eqn. (3) agree in the limit of very large training sets, but Eqn (3) is subject to biases

otherwise. For training sets smaller than tens of thousands of galaxies, one can improve the

P (z)s by multiplying each P (z) by the ratio of N(z)wei to N(z)P. That is,

P (z) → P (z)
N(z)wei
N(z)P

(4)

This correction essentially corresponds to using the weights estimate as a prior on the P (z)s.

3. Photometric Data

The photometric data were drawn from data release 8 (DR8) of the Sloan Digital Sky

Survey III. Full details are given in the data release paper Aihara et al. (2011). As compared

to the earlier DR7 release (Abazajian et al. 2009), DR8 includes an additional 2500 deg2 of

new imaging in the Southern Galactic Cap (SGC), acquired to facilitate spectroscopic target

selection for the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of SDSS III.

SDSS (York et al. 2000) images are gathered using the 2.5 meter at Apache Point (Gunn

et al. 2006) with the camera (Gunn et al. 1998) running in time-delay-and-integrate mode.

Observations are taken in each of the SDSS bandpasses (ugriz; Fukugita et al. 1996) nearly

simultaneously as sky moves across bands in the order riuzg. The data were taken during

photometric nights under relatively good seeing conditions (Hogg et al. 2001). A series of

pipelines are run to calibrate the data (Padmanabhan et al. 2008; Smith et al. 2002; Tucker

et al. 2006), derive astrometry (Pier et al. 2003), and calculate fluxes, shapes and other
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interesting quantities (Lupton et al. 2001). Note the calibrations used for these data are

derived using the “ubercalibration” technique presented in Padmanabhan et al. (2008).

4. Photometric Quantities

In this section we describe the photometric quantities used in the creation of the input

catalog. Most of these quantities are measured by the SDSS photometric pipeline PHOTO.

An early version of the pipeline is described in Lupton et al. (2001); other details can be

found in the SDSS Data Release papers, e.g. Adelman-McCarthy et al. (2006) and at the

SDSS III website2. We give a few additional details below. In comparison to DR7, the DR8

makes use of an updated version of the PHOTO software reduction pipeline, v5 6 rather than

v5 4, including some updates to sky subtraction that can change galaxy photometry and,

potentially, the P (z)s.

For colors we use the SDSS “model magnitudes”, which we refer to as modelmag3.

Each object is fit to an elliptical exponential disk and an elliptical De Vaucouleurs’ profile

convolved with a double Gaussian approximation to the PSF model interpolated to the

location of the object (Lupton et al. 2001; Sheldon et al. 2004). For the modelmag, the

best fit model in the r band is then used to extract the flux in the other four bandpasses,

accounting appropriately for the PSF in each band. Thus the effective aperture is the same

for all bands, which is appropriate for extraction of color information.

We use “composite model magnitudes” as an approximate total magnitude for each

object, which we refer to as cmodelmag. For each bandpass separately, PHOTO does an

additional joint fit to a non-negative linear combination of the best-fitting exponential and

De Vaucouleurs’ models. This fit determines an additional parameter frac deV (fdeV ),

which is the fraction of the total flux estimated to come from a De Vaucouleurs’ profile. The

composite model flux in each band is then

Fluxcmodel ≡ (1− fdev)× Fluxexp + fdev × Fluxdev, (5)

Because this procedure is carried out separately per band, the effective aperture for each

band is different, so these magnitudes are not appropriate for estimating colors.

For quality assurance, we use bits from the OBJECT bitmask output by PHOTO4. We also

2http://www.sdss3.org

3http://www.sdss3.org/dr8/algorithms/magnitudes.php

4http://www.sdss3.org/dr8/algorithms/flags detail.php
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use the RESOLVE STATUS to choose primary observations5. We will describe how the flags are

used in section §5.

5. Photometric Sample Selection

5.1. Star-Galaxy Separation

The PHOTO pipeline uses the concentration c to separate stars from galaxies. The con-

centration is the difference between magnitude determined from the best fitting PSF model

psfmag and the modelmag which is the better fitting of the exponential and De Vaucouleurs’

models convolved with the local PSF:

c ≡ psfmag−modelmag . (6)

For stellar objects, the scale of the modelmag approaches a delta function and the result

becomes equivalent to the psfmag. Thus the concentration should be ≥ 0 within the noise,

with stars close to zero and galaxies greater than zero. The pipeline defines galaxies as

objects with c > 0.145 where c is derived from the summed fluxes from all bandpasses6.

At our magnitude limits, the stellar contamination is relatively large. Using a small,

space-based, high angular resolution data set matched to SDSS data as a truth table, the

approximate stellar contamination can be determined. At r = 21 the contamination is a few

percent, but the contamination increases to approximately 10% at r = 227.

For studies where completeness and purity must be known precisely, Scranton et al.

(2005) recommend using probabilistic star galaxy separation at fainter mags (r > 21); i.e.

attempt to determine the probability that an object is a galaxy and either use that as a

weight or make appropriate cuts.

In practice the end user should choose a subset of the data that suits their needs. We

provide a catalog here that should be a superset of objects that can be further trimmed.

5http://www.sdss3.org/dr8/algorithms/resolve.php

6http://www.sdss3.org/dr8/algorithms/classify.php

7http://www.sdss.org/DR7/products/general/stargalsep.html
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5.2. Other Cuts

We remove objects for which the extinction-corrected (Schlegel et al. 1998) model flux is

not well determined, in at least one of the photometric bands, by demanding u<21 || g<22

|| r<22 || i<20.5 || z<20.1, where || is a C-style “or” meaning any one of the criteria should

be true. This cut removes spurious entries in the catalog. As such, this cut is relatively

unimportant compared to the cut in r given below.

We additionally demand a detection in both the r and i bands. Rather than applying

a magnitude cut, we instead use the OBJECT processing flags BINNED{1,2,4}, which indicate

the object was detected in the original image (binned by 1), the ×2 binned image, or the

×4 binned image, respectively(Stoughton et al. 2002).

We remove all objects that have the following OBJECT flags set: SATUR, BRIGHT,

DEBLEND TOO MANY PEAKS, PEAKCENTER, NOTCHECKED, NOPROFILE as well as objects that are

(BLENDED && NODEBLEND); in other words, detected to be blended but not successfully de-

blended into components (where && is a C style “and”, meaning both criteria are required

to be true).

We demand that the data are photometric in each band, as indicated by the CALIB STATUS

flag PHOTOMETRIC.

We only use objects marked as SURVEY PRIMARY in their RESOLVE STATUS flags field.

Different scans on the sky image the same objects due to the small overlap regions between

adjacent scans, overlaps at the end of the scan lines where the great circles converge, and re-

observed scan lines. This results in duplicate observations for many objects. These duplicates

are “resolved” and only a single observation is assigned SURVEY PRIMARY. Note that the

SURVEY PRIMARY flag also implies that, if the object is blended, it is either a child or not

deblended further. This cut is made in the OBJECT flags as !BRIGHT && (!BLENDED ||

NODEBLEND || nchild == 0).

We also require the extinction corrected (Schlegel et al. 1998) cmodelmag in the r band

to be in the range [15.0, 21.8]. This cut is more stringent than our initial magnitude cut,

which just demanded a good detection in at least one of the bands and therefore might allow

galaxies fainter than 22nd magnitude in r into the sample. Also this cut is in cmodelmag

rather than modelmag. We also restrict the extinction corrected modelmag to be within the

range [15.0, 29.0] for all bands in order to ensure reasonable colors for the galaxies.

We make broad geometrical cuts on the catalog. We trim the objects to the BOSS

footprint, shown in Fig. 1. We also remove any objects near stars in the tycho2 catalog



– 9 –

Fig. 1.— BOSS angular window function for the south galactic cap on the left and the north

galactic cap on the right. The differently shaded regions represent contiguous rectangular

regions in SDSS survey coordinates, used for construction of the window function. Note

points with RA > 300◦ have been wrapped below zero to avoid the 360◦ crossing point.

(Høg et al. 2000) using a variable radius that depends on the magnitude of the star:

radius = (0.0802× B2

T − 1.860× BT + 11.625)/60.0 (7)

where BT is the Tycho magnitude and r is in degrees(Blanton et al. 2005). Finally, we

remove all objects from images taken where a u amplifier was not working8.

The final photometric catalog contains 58,533,603 objects. The distributions of extinction-

corrected r-band cmodelmag and colors derived from extinction-corrected modelmag are

shown in Fig. 2.

The following list shows a breakdown of the fraction of objects lost to a given cut after

applying r<21.8 and geometrical cuts, and when only that cut is applied

8http://www.sdss.org/dr7.1/start/aboutdr7.1.html#imcaveat
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• BINNED flag cuts: 0.92

• CALIB STATUS flag cuts: 0.99

• OBJECT flag cuts: 0.98

• Cutting all model mags to [15.0,29.0]: 0.80. Independently by band: u: 0.82 g: 0.99

r: 1.00 i: 0.99 z: 0.98

The loss of 20% of the galaxies to the last cut is primarily to the ulimit. This means

the sample is not strictly flux-limited to r<21.8. Star forming galaxies will be retained more

so than those with older stellar populations.

6. Training Samples

We use a spectroscopic training set drawn from a number of sources. These sources

contain mostly galaxies and a small number of stars in order to help characterize stellar

contaminants from the photometric sample at low redshift. In the following sections we

give short details on each sample and describe our process for matching to the photometric

sample.

6.1. Samples Used in this Study

• 435,878 redshifts from the SDSS spectroscopic samples, principally from the MAIN

(Strauss et al. 2002) and Luminous Red Galaxy (LRG; Eisenstein et al. 2001) sam-

ples, with confidence level zconf> 0.9, and r-band cmodelmag < 19.5.

• 445 objects from the Canadian Network for Observational Cosmology (CNOC) Field

Galaxy Survey (CNOC2; Yee et al. 2000)9 with Rval > 4 for Sc= 2 or 4, or Rval > 5

for Sc= 5

• 151 from the Canada-France Redshift Survey (CFRS; Lilly et al. 1995)10 with Class

≥ 3.

9http://www.astro.toronto.edu/∼cnoc/cnoc2.html

10http://www.oamp.fr/people/tresse/cfrs/cfrs.html
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• 1,868 from the Deep Extragalactic Evolutionary Probe 2 survey (DEEP2; Weiner et al.

2005)11 with zqual ≥ 3. Of these, 1,499 are an approximately magnitude-limited

sample from the Extended Groth Strip (EGS). The remainder is BRI color-selected

to target z > 0.7 galaxies, hereafter denoted the non-EGS sample.

• 197 from the Team Keck Redshift Survey (TKRS; Wirth et al. 2004)12 with Q = 4 and

Q = −1. The flag Q = −1 corresponds to stars, and only two of them were left in the

final sample.

• 8,633 LRGs from the 2dF-SDSS LRG and QSO Survey (2SLAQ; Cannon et al. 2006)13

with qop ≥ 3.

• 2,080 from zCOSMOS redshift survey Lilly et al. (2007), with cc=3.4 || 3.5 || 4.4.

|| 4.5 || 9.5. Note that 2,046 galaxies had cc=3.5 || 4.5, and 24 had cc=9.5.

• 1,587 from the VIMOS VLT-Deep survey (VVDS; Garilli et al. 2008)14 with zqual =

3 || 4.

• 16,874 from four fields of the PRIMUS survey (PRIMUS; Coil et al. 2010; Cool et al.

2012)15. Only PRIMUS objects with Q = 4 were used.

In table 1 we present some statistics about each training set.

6.2. Matching to SDSS Imaging Data

We spatially match the training sets listed in §6.1 to the photometric catalog described

in §5. We choose the closest match within 2′′. By performing this match we place the training

set galaxies on the same photometric system as the photometric set. We also guarantee that

the matches are drawn from the same magnitude range, and have the same quality cuts

applied, as the photometric set.

11http://deep.berkeley.edu/DR3

12http://tkserver.keck.hawaii.edu/tksurvey/

13http://www.2slaq.info/

14http://www.oamp.fr/virmos/vvds.htm

15http://cass.ucsd.edu/∼acoil/primus/
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As noted in §6.1, the training sets contain some stars. There are also stars in the

photometric set, since the star galaxy separation is not perfect. Thus, through this matching

between photometric set and training set it should be possible to place a fraction of the stars

in the photometric set at redshift zero; or at least some part of their derived P (z). This

is not a complete substitute for better star galaxy separation; as we have noted above, our

sample should be considered a superset, to be trimmed by the end user to suit their needs.

7. Results

We use the algorithm described in §2 to derive weights for each training set galaxy.

We then use these weights to calculate a weighted redshift histogram which, under our

assumptions, should be proportional to that of the photometric set. We also derive individual

redshift probability distributions P (z) for each photometric galaxy.

7.1. Derived Weights in Observable Space

The r-band cmodelmag and colors based on modelmag for the photometric and training

sets are shown in Fig. 2. Also shown are the derived weights for the training set and the

resulting weighted histograms. These are the fundamentally new calculations presented in

this work.

The weighted training set distributions should be approximately proportional to the

photometric set distributions in order to derive good redshift distributions. There are devi-

ations at g− r ∼ 1.5 and r− i ∼ 0.6, but qualitatively the distributions are close. We focus

on the accuracy of the recovered redshift distributions rather than a detailed comparison of

these distributions.

7.2. Derived N(z)

In Fig. 3 we present the recovered redshift distribution for the entire sample as described

in §5. Also shown is the redshift distribution of the original training set. These distributions

are in qualitative agreement with those shown in Cunha et al. (2009), although that sample

had a fainter r-mag limit at 22.0. Note the sub-plot showing the region near z = 0. As

expected, there is a non-zero fraction of the overall distribution near redshift zero. The

fraction of the probability at z < 0.002 is about 0.4%. It is not known exactly how many stars

are in the photometric sample, but this is probably a lower limit on the stellar contamination
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Fig. 2.— Distributions of photometric quantities for the photometric sample and train-

ing sample. The upper left panel shows the extinction-corrected r-band cmodelmag. Both

samples are cut at r<21.8. Also shown is the weighted histogram for the training sample

where the weights are derived to produced distributions approximately proportional to the

photometric sample. The following four panels show extinction-corrected colors based on

modelmag. The bottom right panel shows the distribution of of the derived weights for the

training sample. Note the weight calculation is performed in the full five dimensional space;

we show the projections here to help visualization.
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(see §5.1). We will estimate the errors on this distribution in §8. These N(z) data are

presented in Table 2.

7.3. Derived P (z)

Also shown in Fig. 3 is the summed P (z) derived for individual galaxies. The uncor-

rected N(z)P is, characteristically, slightly more peaked than than N(z)wei. In §7.3.1 we

apply Eq. 4 to correct the P (z)s.

In Fig. 4 we show six randomly chosen P (z)s. Each panel contains a P (z) drawn from

a particular magnitude range in extinction-corrected r-band cmodelmag; these ranges are

given in the figure caption. This figure captures the general trend that the P (z) are broader

at fainter magnitudes, which is the expected behavior.

The uncertainty in individual P (z)s are typically dominated by shot-noise error. The

scale of both statistical and systematic uncertainties in the individual P (z)s is strongly

correlated with the width of the P (z) (Cunha et al. 2009). A broader P (z) reflects a larger

degeneracy in observable space, and requires more training-set objects to characterize. Fig. 5

shows the distribution of objects in the photometric sample as a function of r-band magnitude

and 1σ width of the P (z). We define 1σ as

σ2 =
1

N

N
∑

i

(〈z〉 − zi)
2, (8)

where 〈z〉 is the mean redshift and the sum is over the N training set galaxies used to

construct the P (z). The contours indicate factor of two changes in density.

We recommend using the 1σ or other width measures of the P (z) as the most efficient

way to trim the sample for improved precision and accuracy. The P (z) width should also be

a reasonable error estimator for use with other photo-z methods. However, we discourage

using the peak or some other single number statistic derived from the P (z) as a proxy for

redshift. See §9 for more details.

7.3.1. Correction to P (z)

As we will demonstrate in §10, the individual P (z)s are somewhat less accurate than

the overall N(z). We can correct the individual P (z) to agree, in the mean, with the overall

N(z) using Eqn. 4. This correction factor is shown in Figure 6. At z & 0.9 neither the N(z)
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Fig. 3.— Reconstructed redshift distribution for SDSS galaxies with r < 21.8. The overall

reconstructed distribution, shown in red, is derived by creating a weighted histogram of the

training set redshifts as described in the text. Also shown in magenta is the sum of all P (z)

derived for individual galaxies. The unweighted training set redshift distribution is shown

in blue. The expected errors on these distributions from cosmic variance in the training set

is shown in Fig. 7. The excess at z ∼ 0 is due to stars in training set having significant

weight; more detail at low redshift is shown in the inset. This excess is at least partly due

to the presence of real stars in our photometric sample resulting from imperfect star-galaxy

separation. The fraction of the distribution at z < 0.002 is 0.4%, which is probably a lower

bound on the stellar contamination.
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Fig. 4.— Six randomly chosen P (z)s. For each panel, an object was chosen from a particular

magnitude range. Column-wise from top the left these ranges are r < 18, 18 < r < 19,

19 < r < 20, 20 < r < 21, 21 < r < 21.5, 21.5 < r < 21.8. The extinction-corrected r-band

cmodelmag of each object is indicated in the upper right of each panel.

or the summed P (z) are well constrained, and the correction factor is noisy. For z > 0.9 we

use the average correction from that range.

7.4. Differences from previous P (z) derived using this method

Unlike for the DR7 catalog, we did not use repeat observations of our training set

galaxies. The use of repeats can provide more localized and smoother P (z) estimates, and

are often useful. However, because only part of our sample had repeat observations, the use

of repeats would effectively increase the sample variance of our results. The use of repeats

may be beneficial for LRGs because the training set is not sample variance limited in this

case. We may release a catalog trained on repeat observations at a future date.
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Fig. 5.— Density contours of the mean P (z) width as a function of r magnitude. The

width of each P (z) is the defined as the standard deviation about the mean. The contours

represent factors of 2 changes in density.
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Fig. 6.— Correction factor from Eq. 4. This correction factor is the ratio of the N(z), which

we find to be unbiased, to the summed P (z) from individual objects. The top panel shows

both N(z) and P (z), and the bottom panel is the ratio. We apply this correction to each of

the P (z)s in the release catalog. Note for z > 0.9 we use the average correction from that

entire range; the blue/solid curve shows the actual applied correction.

7.5. Acquiring the Data

The P (z) for all galaxies are available from the SDSS III website16. The data are

available in both FITS format and ASCII. The objects are split into different files according

to their SDSS run id, with each row in the file representing the data for a single SDSS

object. The data for each object are SDSS id, the input colors and magnitude for each

object, equatorial latitude and longitude, and the estimated P (z).

16http://www.sdss3.org/dr8/data access.php#VAC
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8. Sources of Error

Extensive tests of the ProbWTS method have been performed on real data by Lima et al.

(2008) using a sample very similar ours. Further tests using simulations were performed by

Cunha et al. (2009). In this section we discuss in detail a number of possible sources of error.

As detailed in Cunha et al. (2009), the derived weights, and inferred N(z), are sus-

ceptible to at least four kinds of training-set selection effects: spectroscopic failures, two

types of large-scale structure bias (sample variance + shot noise in the training set), and

selection in non-photometric observables. In addition, the fact that the weights use a non-

infinitesimal volume in color-magnitude space to re-weight the photometric set can yield a

small Eddington bias to the recovered distribution. And, as mentioned previously, incorrect

star-galaxy separation can result in incompleteness and contamination of the sample. Be-

cause our training set consists of many different surveys with different characteristics, it is

important to quantify the contribution of each to the overall result. Table 1 lists, for each of

the surveys comprising the training set, the number of objects, the approximate area, and

the fraction the survey contributes to the weighted estimate of the overall redshift distribu-

tion. This fraction is calculated by summing the weights assigned to objects in each survey

and dividing by the sum of weights from the entire training set.

From Table 1, we see that PRIMUS carries the most weight by a large margin at 62%.

Overall, the magnitude-limited surveys that reach our selection depth of 21.8 - PRIMUS,

TKRS, CNOC2, DEEP2-EGS, CFRS, VVDS, and zCOSMOS - represent about 81% of the

total weight. This is desirable, because it minimizes the risk of bias in our assessment of

errors in what follows. The Table also shows that the SDSS MAIN sample (r < 17.8)

contributes only 1.7% of the weights, which is consistent with the fraction expected from

simulations for a flux-limited sample to r < 21.8. The remainder of the SDSS spectra are

LRGs to r < 19.4, which make a contribution to the total weight at 7.4%.

In what follows, we identify potential sources of systematics and detail our tests to

constrain them:

• Large-scale structure: We expect this item to be one of the main sources of error.

We use galaxy+N -body simulations17 to access the sample variance uncertainty in

the spectroscopic redshift distribution of the training set. The photometry of the

simulation assumed substantially deeper observations, so the selection given below

is only roughly appropriate. We first made a cut on r < 21.8 followed by a cut

17Simulations provided courtesy of Risa Wechsler and Michael Busha. See Busha et al. (2011) for details.
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on u < 24.7 to match the fraction of objects removed by the u-band selection on

the real data. For simplicity, we only simulate the magnitude-limited surveys of the

training set. In addition, because of the overlap between zCOSMOS and one of the

PRIMUS fields, we neglect the zCOSMOS sample in the error estimation to simplify

the calculation. This approach results in a ∼10% increase in the error bars relative to

including zCOSMOS as an independent sample. The predicted error bars are overlayed

on the simulated overall redshift distribution in Fig. 7, and the values of the errors

are given in Table 2. The uncertainty in the training set redshift distributions is

not identical to that of the uncertainty in the estimated redshift distributions N(z)

derived using the weights, so the error bars should be thought of as approximate. A

more detailed estimation of the errors would require SDSS-specific photometry+N -

body simulations. Relative to the error bars in the training set, the error bars in the

weighted N(z) should be (very roughly) about 10-30% smaller, with increased anti-

correlations between neighboring bins, but a more exact statement would require a

significantly more detailed investigation. We explore these issues in more detail, and

for a different data set, in Cunha et al. (2011).

• Selection in non-observables: Two of the surveys comprising our training set have

selections in observables that are not included in the SDSS magnitude-limited sample.

As mentioned previously, the DEEP2-nonEGS sample is selected using BRI photometry

to target galaxies above z > 0.7. As shown in Cunha et al. (2009), the use of DEEP2

in earlier versions of this catalog resulted in a bump in the overall estimated redshift

distribution around z ∼ 0.8. The present data release has a brighter magnitude cut

and additional training data, which has eliminated this bias. DEEP2-nonEGS carries

about 1.4% of the total weight. The 2SLAQ sample targets LRGs. Besides SDSS

magnitudes, 2SLAQ also uses morphological information in the selection. Because

shape correlates poorly with redshift, biases due to inclusion of the 2SLAQ sample are

expected to be small. 2SLAQ is an important part of our sample because it provides

a better training set for LRG’s at higher redshift than the SDSS sample.

• Spectroscopic redshift failures: The impact of spectroscopic failures is the most diffi-

cult to quantify. We chose a bright r-magnitude cut and relatively stringent cuts on

spectroscopic quality in order to minimize the effect of incorrect redshifts. However,

this does increase the incompleteness of the sample. We estimate a completeness rate of

roughly 70% for the main training sets comprising our sample (PRIMUS, zCOSMOS,

VVDS, DEEP2-EGS). Here we define the completeness as the number of objects with

high redshift confidence divided by total number of galaxies targeted for observation.

The incompleteness in the training sample is problematic if it is not purely random and

if it is not well described by the observables. Nakajima et al. (2011) conducted tests
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on the selection of the main samples comprising our training set, namely PRIMUS,

VVDS, DEEP2 and zCOSMOS, and found that, with the exception of VVDS, none of

the samples showed signs of incompleteness in 1d slices through color and magnitude

space18.

In addition, incompleteness that is well localized in the observable space is partly

corrected by the weighting procedure. The risk remains that the incompleteness is

partly associated with galaxies that are localized in redshift but not in color, or are

localized in color, but only comprise a very biased sample of the redshift distribu-

tion of galaxies with the same color. A proper assessment of the exact nature of the

incompleteness in the training sets would require detailed simulations of the spectro-

scopic surveys. It is encouraging that the redshift distributions of the different training

samples are roughly consistent with each other, despite being obtained from surveys

with significantly different instruments and redshift success rates (Fig. 7 of Nakajima

et al. 2011). If all of the surveys that were used to construct the training sample were

unable to obtain redshifts for some specific type of galaxy, then this comparison be-

tween their redshift distributions could not be used to diagnose incompleteness issues.

However, given the relatively high completeness for some of those samples and the

relatively low-redshift, bright sample we are using, this scenario seems unlikely. The

completeness could be increased by adopting less stringent quality cuts, at the cost of

increasing the fraction of wrong redshifts. Cunha et al. (in preparation) show, using

spectroscopic/photometric simulations of the Dark Energy Survey and spectroscopic

follow-up surveys, that, whereas incompleteness in the spectroscopic samples can be

robustly identified with colors, incorrect redshifts need to be exquisitely controlled. We

therefore, prefer to adopt more stringent quality cuts.

• Seeing: Nakajima et al. (2011) report that differences between the seeing distribu-

tion of the galaxies in the photometric and the training set can lead to biases in the

photo-z error calibration. In figure 8 we show the seeing distributions for all of our

photometric sample compared to the four highest weight training samples, not includ-

ing SDSS for which the seeing distribution is a near perfect match. The distributions

are qualitatively similar, but with a trend to better seeing for the training set matches.

More quantitatively, we checked the sensitivity of our results to seeing-induced biases

by including seeing as a variable in the weights estimation. We find only negligible

18The sample in that paper was not purely flux limited, as the requirement that galaxies be well-resolved

eliminates a fraction of galaxies that is a weak function of magnitude for r < 21.5 and a strong one for

21.5 < r < 21.8. Thus the mean magnitude of that sample is brighter than the one in this paper by ∼ 0.1

mag.
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change in the recovered redshift distribution. Hence, although differences in seeing are

in general a concern, we find little effect in our data.

Lima et al 2008 consider a case that contains much of the observational issues described

above. In Fig. 9 of that paper we can see the effect of using the weights technique to

reconstruct the redshift distribution of the DEEP2-EGS sample using a combination of

spectroscopic samples. In the case shown, sample variance in the DEEP2-EGS sample is a

main limiting factor to the quality of the reconstruction.

For individual P (z)s, the main source of uncertainty is shot-noise, because only 100

galaxies were used to estimate each P (z). The choice to fix the number of neighbors keeps the

shot-noise equal for all galaxies, but can yield biases or an artificial broadening of the P (z) if

the training set is too sparse near the galaxy of interest. However, we do not find the volume

spanned by the 100 nearest neighbors to be a good indicator of the P (z) quality, because

other properties of the redshift-observable hyper-surface affect the local density of galaxies.

A potentially more interesting indicator of bias in individual P (z)s is the distribution of

observed properties for the training set nearest neighbors relative to the galaxy for which a

P (z) is needed - i.e there could be a bias if the galaxy is very offset from the center of the

distribution of neighbors. We leave these explorations for a future work.

9. Proper Use

In this section we describe the proper use of these redshift distributions. We risk an

overly pedantic discussion in order to ensure that past mistakes in these types of analyses

are not repeated.

If one desires to use the P (z) to evaluate any non-linear function F (z), one must in-

tegrate the function times the P (z) over the entire distribution; i.e. one must take the

expectation value of the function. The reason is quite simple. In general a function evalu-

ated at the expectation value of z does not equal the expectation value of the function:

〈F (z)〉 6= F (〈z〉). (9)

The expectation value of the function should be computed as follows:

〈F 〉 =

∫

∞

0

F (z)P (z)dz. (10)

It is not correct to simply take the effective redshift
∫

z P (z) dz and evaluate the function

at that redshift.
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Fig. 7.— Top panel: Simulated redshift distribution with errors for an r < 21.8 sample. The

error bars are the 1σ simulated variability due to sample variance in the catalogs comprising

the training set. Also shown is the estimated N(z) for our sample. Lower panel: estimated

N(z) combined with the predicted sample variance errors from the simulation.

This statement is true in most interesting science cases. An excellent example is in

gravitational lensing, where one must estimate the “critical surface density” Σcrit, which

determines the lensing strength of a given lens-source pair; the lensing deflection angle is

proportional to Σ−1

crit
. The function Σcrit depends on the angular diameter distances to the

lens, source and between lens and source in a non-linear manner. The proper estimator for

a lens at redshift zl and source with P (zs) is

Σ−1

crit
(zl) =

∫

∞

0

Σ−1

crit
(zl, zs)P (zs)dzs. (11)
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Fig. 8.— Distribution of seeing for the photometric sample (All BOSS) and the four most

important training samples. These samples are important because they are magnitude lim-

ited and give relatively high weight in the analysis. Also shown is the sum of the training

samples. The curves for each sample are normalized relative to the summed curve, and both

the summed and photometric curves are normalized to unity.

10. P (z) and galaxy-galaxy lensing: proof-of-principle

The sensitivity of observational methods to the properties of the P (z) or N(z) depends

on the details of how the observation and analysis are performed. In this section, we use

the galaxy-galaxy lensing calibration method from Mandelbaum et al. (2008) and Nakajima

et al. (2011) as an example of determining this sensitivity. This methodology requires the

use of a fair subsample of source galaxies with spectroscopic redshifts. For the purpose of

this paper, we use the DEEP2 EGS region, in which there are 730 galaxies that (a) pass all

cuts to be included in the SDSS source catalog from Mandelbaum et al. (2005), (b) have

secure redshifts from DEEP2, and (c) pass the additional cut r < 21.5. DEEP2 EGS is only

one of the many training samples used in our analysis, so this exercise should be thought of

as a proof-of-principle.

In brief, we have measured the expected calibration bias bz in the galaxy-galaxy lensing

signal due to the method of estimating the source redshift (i.e., a multiplicative systematic

error). This bz tells us about systematic errors in our conversion from the observed weak
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lensing shear (or shape distortion) to surface mass density. Quantitatively, the ratio of the

true to the estimated surface mass density is 1+bz . We also estimate the degree to which the

variance in the lensing signal deviates from the ideal variance we would achieve with optimal

weighting by the true source redshift (large deviation results in increased statistical error).

The increase in statistical error when we have degraded redshift information arises both from

source misidentification, and also from deviations of the weights from the optimal19 1/Σ2

crit
.

Schematically, these two quantities can be determined via weighted sums over lens-source

pairs j (with weight w̃j; in what follows, estimated quantities using approximate redshift

information have a tilde, and ones that use the true redshift do not):

bz + 1 =

∑

j w̃j(Σ̃crit,j/Σcrit,j)
∑

j w̃j

(12)

and

Variance ratio ≡
Ideal variance

Real variance
=

(
∑

j

√

w̃jwj)
2

(
∑

j wj)(
∑

j w̃j)
. (13)

For more detail, see the aforementioned papers.

In Figure 9 we show the results of these calculations for several test cases. First, the

red short-dashed curve provides, as a baseline, the calibration bias (top) and variance ratio

(bottom) when using the ZEBRA photo-z studied in Nakajima et al. (2011). As shown,

there is a significant bias in the lensing signal that must be calibrated. Next, the green

long-dashed line shows what happens if we use the N(z)wei as an estimate of the redshift

distribution, rather than using any individual galaxy photo-z or P (z) information. Crucially,

the lensing signal is unbiased in this case. However, as shown in the bottom panel, we do

find an increased statistical error due to lack of redshift information on a per-galaxy basis.

Third, the solid black line demonstrates what happens when we use the individual P (z)s

to estimate Σcrit using Eq. 11. These P (z)s are derived from a very specific, idealized case,

using only EGS both as the training sample and the photometric sample. In this case, the

individual P (z)s are on average 40% broader than the DR8 P (z)s because of the use of 100

neighbors to construct each P (z) when the training sample itself is only 7 times as large.

To compensate for the bias introduced by the small size of the training sample, we have

imposed a multiplicative correction factor to the P (z)s such that
∑

P (z) = N(z)wei using

Eq. 4. Nonetheless, there is a calibration bias due to the very significant width of the P (z)s

19Optimal weighting would also include a factor that downweights galaxies with noisier shape measure-

ments, ∝ (e2rms + σ2
e
)−1. For simplicity, we neglect this factor in the tests that follow; however, in order to

use this weighting, which modifies the effective N(z), the shape measurement error weighting must also be

used in the derivation of the P (z) from the training sample.
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(which can be removed using a calibration sample); but the variance ratio is still far closer

to optimal than when we did not use weighting information, and slightly closer than when

we used ZEBRA photo-z.

The magenta dot-dashed line shows the results when 7 neighbors are used to estimate

the P (z), not including the galaxy itself. The blue dot-long dashed line shows the same case

but with the Eq. 4 correction. This use of 7 neighbors reduces the abnormally broad P (z)s

caused by using such a small training sample and 100 neighbors. The mean P (z) width

for the 7 neighbors case is 0.0989, to be compared to the mean width of the DR8 P (z)s of

0.0983. The calibration bias for 7 neighbors is also quite close to the ideal case with N(z)wei,

and the weighting is the closest to optimal of all the cases considered in this paper.

To summarize, we have demonstrated for this simplified training set that, for the purpose

of lensing, we achieve a near-perfect signal calibration when using N(z)wei; i.e., no individual

galaxy redshift information. However, the weighting is suboptimal. When we use individual

P (z)s, the lensing signal can be biased due to their finite width even if
∑

P (z) = N(z)wei,

but this bias can be calibrated. The advantage of using individual P (z) information is that

statistical errors on the lensing signal are reduced due to more optimal weighting. This is

because a signal-to-noise ratio weighting is proportional to 〈Σ−2

crit
〉, so sources expected to be

behind the lens are given higher weight than those expected to be close to or in front of the

lens.

Again, we emphasize that this analysis used only DEEP2 EGS, and should be used as a

proof-of-principle to gain intuition. Further tests using real data can be found in e.g. Lima

et al. (2008); Carnero et al. (2011). For tests using simulations see Cunha et al. (2009). Users

of these data should perform similar analyses to these but matched to their exact analysis

and selection criteria.

11. Summary

In this paper we presented a catalog of photometric redshift probability distributions for

the SDSS DR8. With some modifications, our method is the same as that used to generate

the P (z) catalog for SDSS DR7, presented in Cunha et al. (2009). For this catalog, we used

the ubercal photometry (Padmanabhan et al. 2008). We also included the PRIMUS galaxy

sample, which more than doubles the number of galaxies in our training set that are drawn

from a flux-limited sample other than SDSS. The addition of PRIMUS provided a significant

increase in the total area of the non-SDSS training set, which reduces the sample variance.

We examined several potential sources of error, including shot noise, sample variance, seeing,
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Fig. 9.— Proof-of-concept analysis of calibration bias in a fictitious lensing analysis. For this

example we used only DEEP2-EGS galaxies but perfect weights estimate (the same galaxies

were used for the training and testing sample – see text for complete description). The

sample variance and width of individual P (z)s for this simple test case are much larger than

for the full DR8 P (z) sample. Top: Lensing signal calibration bias (Eq. 12) as a function of

lens redshift, for four cases labeled on the plot and discussed in the text. Bottom: Ratio of

the ideal to the real signal variance when using different methods of redshift determination;

the goal is to stay as close to unity as possible.

star-galaxy separation, and spectroscopic failures. We expect that sample variance is the

main source of uncertainty in our overall redshift distribution. For individual P (z)s, shot-

noise is the limiting uncertainty, since each P (z) is based on 100 training set galaxies. These

P (z)s, and the ensemble N(z) derived in this work (Table 2), should be useful for a variety of

science applications, such as galaxy angular two-point correlation functions, galaxy cluster

detection and weak gravitational lensing.
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Coe, D., Beńıtez, N., Sánchez, S. F., Jee, M., Bouwens, R., & Ford, H. 2006, AJ, 132, 926

Coil, A. L., Blanton, M. R., Burles, S. M., Cool, R. J., Eisenstein, D. J., Moustakas, J.,

Wong, K. C., Zhu, G., Aird, J., Bernstein, R. A., Bolton, A. S., & Hogg, D. W. 2010,

ArXiv e-prints

Connolly, A. J., Csabai, I., Szalay, A. S., Koo, D. C., Kron, R. G., & Munn, J. A. 1995, AJ,

110, 2655

Cool, R. et al. 2012, in preparation

Crocce, M., Gaztanaga, E., Cabre, A., Carnero, A., & Sanchez, E. 2011, ArXiv e-prints

Cunha, C. E., Huterer, D., Busha, M. T., & Wechsler, R. H. 2011, ArXiv e-prints



– 30 –

Cunha, C. E., Lima, M., Oyaizu, H., Frieman, J., & Lin, H. 2009, MNRAS, 396, 2379

Eisenstein, D. J. et al. 2001, AJ, 122, 2267

—. 2011, AJ, 142, 72

Feldmann, R., Carollo, C. M., Porciani, C., Lilly, S. J., Capak, P., Taniguchi, Y., Le Fèvre,
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Table 1. Statistics for Each Training Set

Survey Number Area Weight Fraction

of Objects (sq. deg.)

PRIMUS∗ 16,874 5.2 0.63

zCOSMOS∗ 2,080 1.7 0.075

SDSS DR5 435,875 5740 0.074

2SLAQ 8,633 180 0.060

VVDS∗ 1,587 4.0 0.060

DEEP2-EGS∗ 1,499 0.4 0.058

SDSS DR5 (r < 17.8) 376,625 5740 0.017

CNOC2∗ 445 0.4 0.016

DEEP2-nonEGS∗ 369 2.8 0.014

CFRS∗ 151 <0.1 0.0076

TKRS∗ 197 0.07 0.0055

Note. — Number of galaxies, area in square degrees, and fractional

contribution to the weights estimate of N(z). The “*” indicates

samples that are approximately flux-limited to our selection depth.
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Table 2. Estimated N(z) and Sample Variance Errors

zmin zmax N(z) Sample Variance

Error

0.000 0.031 0.150 0.052

0.031 0.063 0.822 0.215

0.063 0.094 1.837 0.409

0.094 0.126 2.815 0.503

0.126 0.157 3.909 0.509

0.157 0.189 5.116 0.725

0.189 0.220 6.065 0.905

0.220 0.251 6.477 0.767

0.251 0.283 6.834 0.817

0.283 0.314 7.304 0.868

0.314 0.346 7.068 0.645

0.346 0.377 6.771 0.785

0.377 0.409 6.587 0.609

0.409 0.440 6.089 0.627

0.440 0.471 5.165 0.602

0.471 0.503 4.792 0.522

0.503 0.534 4.228 0.383

0.534 0.566 3.664 0.394

0.566 0.597 3.078 0.364

0.597 0.629 2.604 0.275

0.629 0.660 2.130 0.224

0.660 0.691 1.683 0.191

0.691 0.723 1.348 0.156

0.723 0.754 0.977 0.141

0.754 0.786 0.703 0.102

0.786 0.817 0.521 0.080

0.817 0.849 0.339 0.060

0.849 0.880 0.283 0.048

0.880 0.911 0.187 0.037

0.911 0.943 0.141 0.031
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Table 2—Continued

zmin zmax N(z) Sample Variance

Error

0.943 0.974 0.104 0.027

0.974 1.006 0.081 0.020

1.006 1.037 0.055 0.017

1.037 1.069 0.043 0.015

1.069 1.100 0.034 0.012

Note. — Reconstructed redshift distri-

bution N(z) for SDSS galaxies with r <

21.8. The first two columns specify the red-

shift range of the bin and the third is the

reconstructed N(z), with arbitrary normal-

ization. The fourth is the sample variance

errors on N(z) derived from simulations,

which we expect to be the dominant uncer-

tainty. These sample variance errors should

be thought of as a rough estimate. A more

perfect match would require a simulation

more specifically tuned to the SDSS data.


